On-Site Water Quality Testing

Steven E. Newman, Ph.D., A.A.F.
Greenhouse Crops Extension Specialist
Colorado State University
Cooperative Extension
Horticulture and Landscape Architecture
(970) 491-7118 office
(970) 217-1052 mobile
eMail: Steven.Newman@ColoState.edu
Every river basin in Colorado has risen above the 30-year average when it comes to snowpack and experts say the state appears to be bouncing back from a five-year drought.

Robert Weller, The Associated Press
Denver Post 5 January 2005

However; “If Congress had listened to explorer and scientist John Wesley Powell 125 years ago, the American West today might be an entirely different place.”

Howard Berkes, NPR 26 Aug 2003
Greenhouses and nurseries get their water from three sources:
- Agricultural wells
- Surface irrigation canals or reservoirs
- Municipal providers

Quality is an issue regardless of the source:
- Alkalinity
- Salinity
- pH
- Sodium Absorption Ratio
- Specific Ions
- Suspended Solids
- Sanitation
Water quality testing on site can be convenient and immediate with the right tools:

- Alkalinity
- Salinity
- pH
- SAR
- Specific Ions
- Solids
- Sanitation
Effect of Water Alkalinity on Substrate pH

Sample A

- $pH = 9$
- $alk = 50$
- Little or no effect on medium pH
- 1 drop of acid to get $pH 6$

Sample B

- $pH = 7$
- $alk = 300$
- Increases substrate pH
- 10 drops of acid to get $pH 6$
Key to Alkalinity Issues

- Alkalinity is crop dependent
 - Range of 40 to 120 ppm CaCO$_3$ is recommended
 - 40% of US greenhouse irrigation water > 200 ppm
 - 18% of US greenhouse irrigation water < 40 ppm
- There is really no single optimal alkalinity
 - *The key is to adapt your nutrient management practices to your water source*
Measuring Alkalinity

- Commercial laboratories
- In-house
 - Titration kits
 - Colorimetric kits
 - Test strips
Water Salinity

- Total dissolved solids
- Measured by electrical conductivity
 - Determined by passing a current through the solution and determining its electrical conductance
 - Units are millimhos/cm, or
decisiemens/meter (dS/m)
Water Salinity

- Restrictions to use:
 - < 0.25 dS/m None
 - 0.25-0.75 dS/m Moderate
 - 0.75-2.25 dS/m High
 - > 2.26 dS/m Severe

- Multiply by 700 to convert to ppm TDS
 - Total Dissolved Solids
A pH reading is a measurement of the hydrogen ion concentration of a solution:
- 0 most acid to 10 most basic
- pH = 7 is neutral
- The relative number of hydrogen and hydroxide ions

- pH = 5.4 to 7.0 acceptable for most crops

\[
\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^- \\
pH = \frac{1}{[\text{H}^+]}
\]
Ions

- Cation - an ion with a positive charge
 - Ca^{++} Mg^{++} H^{+} K^{+} NH_{4}^{+}
- Anion - an ion with a negative charge
 - OH^{-} NO_{3}^{-} SO_{4}^{2-} Cl^{-}

Charges must be balanced in solution
pH and Water Chemistry

Battery acid
Vinegar
Orange juice
Deionized water
Baking soda
Ammonia
Bleach
Lye

Acid
Neutral
Alkaline
Plants grow best at a pH of 7, which is Neutral. Acidic conditions (pH < 7) and Alkaline conditions (pH > 7) are less favorable for plant growth.
pH Meters
Calibrate your pH Meter
Irrigation water is often overlooked as a source of infection.
Irrigation Water Disinfection

- UV-C Sterilization
- Heat Treatment
- Chlorination
- Ozone Treatment
- Hydrogen Peroxide

On-site Testing
Oxidation Reduction

Oxidation is defined as an increase in the positive oxidation number with a corresponding loss of electrons.

Reduction is a decrease in the positive number of ions with a corresponding gain in electrons.

Reduced compound A (reducing agent)

Oxidized compound B (oxidizing agent)

A is oxidized, losing electrons

B is reduced, gaining electrons

Oxidized compound A

Reduced compound B
Common industrial oxidizers and their potential relative to chlorine

<table>
<thead>
<tr>
<th>Oxidant</th>
<th>Oxidation potential (mV)</th>
<th>Oxidation relative to chlorine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorine</td>
<td>3,050</td>
<td>2.25</td>
</tr>
<tr>
<td>Ozone</td>
<td>2,070</td>
<td>1.52</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>1,780</td>
<td>1.31</td>
</tr>
<tr>
<td>Potassium permanganate</td>
<td>1,680</td>
<td>1.25</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>1,570</td>
<td>1.15</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1,360</td>
<td>1.00</td>
</tr>
<tr>
<td>Bromine</td>
<td>1,070</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Pathogen survival from laboratory simulations and hydrocooler studies according to Suslow (2003)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Survival at ORP (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 485</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>> 300 s</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>> 300 s</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>> 300 s</td>
</tr>
<tr>
<td>Thermotolerant coliform</td>
<td>> 48 hr</td>
</tr>
</tbody>
</table>
Oxidation Reduction and pH

![Graph showing the relationship between oxidation reduction potential (mV) and solution pH.](image)

- Oxidation reduction potential (mV)
- Solution pH
- OCl^-
- pH
- HOCl
Oxidation Reduction and pH

Regal geranium stock plants

Hypochlorous acid injected into irrigation water
Oxidation Reduction and Cl

Colorado Greenhouse Example

With acid injection
ORP=825 mV
Free Cl=1.4
Total Cl=2.25
ORP Measurement and Chlorine

Panel Mount with Installed ORP Electrode

Handheld ORP Meter

Free Chlorine

$135-$150
Colorimetric Chlorine
Colorimetric Chlorine
Other Chlorine Tests

ORP Indicator Strips

13 January 2005

ProGreen EXPO 2005

28
Resources

Publications

- Water, Media and Nutrition, edited by D.W. Reed. Ball Publishing
- Understanding pH Management for Container-grown Crops, W.R. Argo and P.R. Fisher, Ball Publishing

Extension Publications

- Alkalinity control for irrigation water used in nurseries and greenhouses. D. Bailey and T. Bilderback. Horticulture Information Leaflet 558, NCSU.
- Water considerations for container production of plants. D. Bailey, T. Bilderback and D. Bir. Horticulture Information Leaflet 557, NCSU

- These three Extension publications, as well as others, can be downloaded free from the NCSU Extension Floriculture Website at:
 - http://www.ces.ncsu.edu/depts/hort/floriculture/crop/crop_water.htm
Resources

- **Hach Laboratories**

- **Pulse Instruments**
 - http://www.pulseinstruments.net/

- **Hanna Instruments**
 - http://www.hannainst.com/usa/

- **Oakton Instruments**
 - http://www.4oakton.com/

- **Spectrum Technologies**
 - http://www.specmeters.com/